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1. Introduction 
Despite significant advances in primary and metastatic lesion detection with static PET, the abiUty to 
accurately detect metastases at an early stage remains the greatest challenge in oncology imaging. At 
an early stage, radiotracer uptake of metastatic tissue is often weak, due to the relatively fewer cells 
involved with disease. Moreover, the diseased tissue and abnormal uptake is, in most circumstances, 
embedded in severe background interference and count noise, thus hardly differentiated from 
surrounding normal tissues with visual inspection in either 2-D or 3-D static PET images. We have 
been seeking a clinically practical way to assist conventional visual inspection of static PET images 
with temporal information derived from a dynamic PET-FDG imaging sequence. Modeling, 
extracting and exploiting physiological features that can distinguish normal breast tissues from 
axillary malignances in dynamic PET has been piursued since the last reporting period. The study 
conducted in the current year was built on the previous year's research, which concentrated on the 
development and testing of optimal computer-aided detection criteria for kinetic feature identification 
from equivocal axillary metastases in noisy images. Rather than replace conventional visual image 
inspection, our goal is to design an intelUgent system that will supplement it. 

The whole proposed study consists of four tasks: Task 1: Developing the mathematical formula to 
linearly map and identify the physiological features contained in PET dynamic sinogram sequence 
(Month 1-8), Task 2: Developing the schemes for objective reduction of dynamic sinogram data 
guided by the identified TAC subspaces of the desired signal (tumor) and the interference (normal 
tissue background plus noise) (Month 4 - 12), Task 3: Deriving and analyzing statistical hypothesis 
test criteria to test the presence of an axillary metastasis in the dynamic images reconstructed from the 
compressed sinogram data (Month 13 - 24), and Task 4: Clinical Evaluation (Month 13 - 36). For 
each task, several subtasks were defined (see the SOW in the grant appHcation for details). 

2. Body 
During this annual reporting period, our efforts were mainly focused on Task 4 as originally proposed 
for the third year of the study. However, after the first year's annual report, it was brought to our 
attention that we needed to obtain approval from the U.S. Army Medical Research and Material 
Command histitutional Review Board (US Army IRB). Although patients whose data are used in this 
study will have a PET scan regardless of their participation in this study, they still must be 
prospectively recruited for "additional" (temporal-based) images. Efforts have been made for last 1.5 
years to complete the respective IRB approvals with protocol/language acceptable to USC's 
histitutional Review Board and the US Army IRB. Because IRB approval is pending, no clinical 
dynamic imaging data have been acquired nor any subjects recruited for the extra pictures since that 
time. Efforts in support of Task 4 have been limited to analyses of dynamic imaging data that already 
existed in the patient database of USC PET center as well as phantom data. Further work on Tasks 1,2 
and 3 has also been continued through this year. The major accomphshments of this activity are 
presented as follows: 

2.1      Assessment of accuracy of ROI-based molecular feature extraction 
Using dynamic phantom data with known ground truth, we tested, to a certain degree, how the time 
activity curve in a large, visible lesion could be possibly interfered by its surrounding background 
activity through the currently used, imperfect reconstruction techniques, or lack of adequate resolution 



and how the accuracy of lesion feature related parameters might be affected by the common ROI- 
averaged time activity curve. 

Experimental phantom study: 
We have performed an experimental study with a realistic liver phantom. In the liver phantom three 
artificial spherical lesions of different sizes and contrasts were placed inserted into the. Two tracers, C 
and '^F, were filled into the liver and lesions, respectively, Mdth uniform activity distributions. Dynamic 
data were acquired of the phantom with ECAT953 2-D whole body scaimer. This allowed the radioactive 
decay signature of the two radiopharmaceuticals to be measured as pseudo-washout data. In the filtered 
backprojection reconstructed images, the smallest lesion v^th 7mm interior diameters was invisible in all 
dynamic frames, while the two largest lesions can be clearly visualized in the FBP images, see Figure 1 
(a) - (d) for an illustration. 
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(a) (b) (c) (d) 
Figure 1: (a) -(c) The last frame FBP images of the smallest, median, and largest lesions in the liver phantom; (d) The time activity 
curves in semi-log scale: true mono-exponential function of ''F (red) and ROI averaged observation. 

The largest lesion was used to mimic a primary tumor detected in a patient. A ROI was placed in it 
indicated in red in Figure 1 (c). The time activity curve in the lesion was estimated by fitting an ROI 
averaged observation. The resulting curve is plotted in semi-log scale and shovra in Figure 1 (d). As 
we can see that the estimated curve in blue is far from the true F time activity curve. The true curve 
should be a mono-exponential fiinction and a straight line in semi-log scale. Evidently, the estimated 
features in lesion were severely contaminated by the activities of ^'C in the liver background. These 
features can not adequately characterize lesions. If we use these inaccurate lesion features to guide a 
filter design, then at an attempt to protect the lesion features during the filtering, we also vulnerably 
keep the imwanted background interference. This will definitely affect the performance of filtering 
and lower the SNR gain in the filtered images. 

2.2       Assessment of non-invasive blood input function extraction 
Blood input function is required in molecular feature extraction with FDG PET time activity models. 
We have also assessed the feasibility of replacing invasive blood sampling with non-invasive blood 
time activity curve extracted firom dynamic image data. The most common way to get blood function 
is invasive blood drawing; however, operationally it is complicated, time consuming, and difficult for 
patients to have arterial blood draws throughout the procedure. A critical issue with the non-invasive 
approaches is their "ACCURACY". This is because, besides noise interference, surrounding tissues. 



There are two non-invasive approaches available: one is a simple ROI based analysis and the other is 
the more complex FADS, or factor analysis of dynamic structure method. FADS is well known for its 
capability to separate time activity curves from the mixed observations. 

Patient study: Ten lung cancer and inflammation patient data were collected for the study. The blood 
samples were invasively collected from all these patients. These blood samples served as gold 
standard in the evaluation. 
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(a) (b) (c) 
Figure 2: (a) The last frame FBP image of a lung cancer patient; (b) The ROI used to non-invasively extract arterial blood 
function; (c) The three blood functions: invasive blood samples (red), FADS estimation (green) and ROI-average (blue). 

This preliminary study over 10 patients concludes that when compared to invasively collected blood 
samples, the blood functions estimated from FDAS have the mean square errors about 7 times lower 
than those of ROI average method. FADS approach is potential to outperform ROI-based method for 
replacing the invasive blood sampling. 

This work has been presented in SNM annual conference 2002, Los Angeles, CA, June 2002. 

2.3 Assessment of improving SNR via spatial-temporal image processing 
Can adding temporal information to spatial processing improve SNR in small, faint or invisible 
lesions? This is a critical question that this study attempts to answer. We conducted the preliminary 
studies with both the digital (computer generated) phantom and the liver experimental phantom data 
that we believe would shed light upon answering the question. 

The above-mentioned liver phantom is used to test in gaining SNR in the smallest lesion through 
spatial-temporal processing. Figure 2 (a) - (c) shows the FBP reconstructed images of this lesion at 
Frame 1,15 and 23 and Figure 2 (d) is the MAP reconstruction of Frame 23. This confirms that the 
lesion is invisible in all the frames using either the simple or advanced reconstruction methods. In 
other words, by exploiting only the spatial information in the data can not improve SNR high enough 
to make the lesion become detectable. To further increase SNR in the smallest lesion, making a use of 
the intrinsic, temporal information available in PET dynamic data is pursuable. We first tried to apply 
FADS to separate or remove the liver background activities and statistical noise superimposed onto 
the lesion, since we know that FADS is well credited in decomposing the mixed observation from 
visible structures. Via FADS we projected the dynamic images into the principle components of the 
images, but in none of the decomposed images the lesion is distinguishable. In Figure 2 (e), the first 
two principle component images are presented as an illustration. This 



indicates that a direct application of FADS is not an answer to our problem, this is because when 
lesion components are too weak to be dominant components, the principle component based FADS 
would fail to separate them from the other dominate components.   Figure 2 (f) is the result of the 
simplest primary tumor feature guided filtering. The technical details are given in Section I.D. 2. In 
this test data, the primary tumor features were extracted in the largest artificial lesion shown in Figure 
1 (c) by a simple ROI average. Although the accuracy of ROI based feature extraction had been 
shown not high enough, the results of this study reveal that adding temporal information to image 
processing indeed has potential to increase SNR in small lesions, as long as the featwes in small and 
primary lesions are similar in certain degree. 
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(a) (b) (c) (d) 

(e) (f) 
Figure 2: (a)-(c) FBP reconstruction of Frame 1,15 and 23; (b) MAP reconstruction of Frame 23; (c) FADS 

decomposed images; (d) filtered image using the simplest version of proposed methods. 

2.4      Development of FADS aided ROI analysis method to improve the accuracy of feature 
extraction 
Feature extraction in the proposal means to estimate the feature vectors, i.e., the macro-parameters 
from the time activity curve observations in dynamic PET images. We developed a factor analysis 
dynamic structure aided, or FADS-aided method against conventional ROI-average to obtain the time 
activity curve observations for the estimation. As we have shown in our preliminary study with the 
experimental liver phantom that the time activity curves obtained by simply averaging over even a 
suitably selected ROI in the large, high background-to-lesion contrast lesion the surrounding tissues 
were severely interfered by the surrounding liver background, see Figure 1 (d) in Section I.C.I. If we 
use the ROI average method for primary tumor feature extraction, with no doubt, the feature vectors 
estimated from such background interfered time activity curves must be inevitably contaminated with 
the background features and can not accurately characterize the tumor molecular behavior. 



FADS processing is widely used in cleaning up the surrounding background time activity 
interferences in the blood function non-invasively extracted in dynamic images at an area with strong 
arterial activity. Our preliminary study found out that FADS processed blood input functions has 
much more fidelity to the invasively collected blood samples in patients, but, on the other hand, we 
have also found that FADS processing failed to remove the interferences superimposed on the 
invisible artificial lesions in both experimental and digital phantom studies due to low lesion-to- 
background ratios. Consider the detected primary tumor and the normal tissues in properly selected 
areas are usually strong that are analogous to the scenario of blood function extraction. Thus, we will 
resort to FADS processing to separate the unwanted time activities contributed from surrounding 
background from the observed time activities in the primary tumor and normal tissues. The feature 
parameters will be estimated from the FADS resulted TACs, instead from that simply averaged in 
ROI. 

2.5.     Development of Feature-guided filtering algorithms for metastasis identification 
Time activity model of metastasis: At early stage, metastasis is small and often mixed with its 
surrounding background activities. We used a mixed FDG PET model in heterogeneous tissue given 
below to characterize its total radioactivity. Let 'indicate the ' pixel in dynamic images, then a 
vector form is expressed by 

k=l 

with f(*Hndicating a vector which consists of a collection of samples of Cp®e"^*'at time instances 

t = h,t2,...,tN when dynamic frames are acquired. Unless mentioned otherwise, a bold face lower case 
and upper case denote a vector and matrix, respectively. The notation "'represents statistical noise. 
F^'^^^ and F^'"^ consist of a group of f^*) related to tumor and normal tissue feature vectors. 

No doubt in above equation the physiological vectors f(*) and coefficient rf/*^ bear the tissue kinetic 
information. Li the existing parametric image approaches, one attempts to estimate all of them 
simultaneously. The inherent problems with the approaches are that in most equivocal or non-palpable 
metastases the physiological features of normal tissues are often dominating. They will certainly lead 
the parameter estimation pursued by curve fitting and results in inaccuracy for estimating the weaker 
tumor-like features and the corresponding coefficients. A consequence of such inaccurately estimated 
tumor-related parameters would result in an incorrect inference to a presence of metastasis. Moreover, 
most of parametric image methods involve iterative optimization procedures that often make the 
parameter estimation a high computational complexity and divergence also frequently occurs. 
Therefore, we propose the following filtering approaches to mitigate these difficulties inherent to the 
parameter estimation for detecting heterogeneous metastatic lesions. 

Given a primary tumor is present in the imaging field. Re-examining above TAG model tells us only 
the physiological factor matrix F^'^'^and its corresponding coefficient vector b^'^^^are lesion 
information-bearing. All other terms in the equation are interferences. When the interference is 
dominant, the characteristics of lesion embedded in severe interference become equivocal and not 
identifiable by visual inspection. We attempt to design a filter ^to suppress the inferences from the 
vector of measurements, c,, for all pixel 1=1,2,..,/. Denote the processed data vector by y, = w^c,-, where 
superscript T indicates a transpose operation in linear algebra. It is our desire that the filter ^can 



remove the interferences and noise from observed TAG, c,-, and to also protect the characterizations 
of lesion from being distorted by the filtering process. The following two filtering criteria and 
associated algorithms developed in this study. 

Tumor + normal tissue feature-guided filtering: We designed a filter ^to satisfy the following 
consfraints: 

where i denote an identity matrix. From Eqs 3 and 4 one can immediately see that the first constraint 
will protect the physiological features from being degraded when applying such consfrained filter ^ 
to the vector measurements of c,-, while the other consfraints ensure a complete elimination of 

interference in the filtered data y, = w^c,-, for 1=1,2,..,/, namely y,. =W^c,=d/'^'^+n,-, where 
n,- = w^n, denotes the filtered noise. 

The mathematical expression of the filter ^ in a general form and the associated filtering algorithms 
have been derived during this project. Notice that no special attentions are given to the statistical 
noise n,- in Eq. (2). The expense is that the filter may only be suitable for processing low statistical 
noise images, e.g. the images reconstructed by ordered subset expectation maximization (OSEM) 
algorithm or maximum a posterior probability (MAP) algorithm. 

Tumor feature-guided filtering: We also developed another filtering criterion that takes into account 
interference and statistical noise simultaneously. The filter minimizes the filtering output energy 
imder a constraint that ensures the energy contributed from lesion components not being degraded. 
This implies that the energy of interference and noise must be minimized. Such a filtering problem 
can be mathematically formulated as follows 

W„_, =argminisjlw^lf), subject to w'^F^'''^ =1 
^ w     (11        II J ^ (3) 

where notation E indicates a expectation operator and |||| denotes a norm of a vector. The above- 
consfrained optimization problem is solvable by employing Lagrange multiplier and sophisticated 
linear algebraic manipulations. 

There is a trade-off between the above two filtering criteria. The first completely eliminates the 
backgroxmd tissue interference, but may worsen the statistical noise. The second takes accoimt 
statistical noise, however, compromises interference suppression. We will analytically compare the 
performance of the two filters and quantify the signal-to-noise ratios out of the filters. 

In order to use this mixture model for heterogeneous tissues, we will need a guidance of anatomic 
images (MRI or CT scans) to spatially partition or segment the entire dynamic PET images into 
several sub-regions with self-similar spatial and temporal characteristics. These anatomic images must 
be co-registered to the PET images. 



3. Key Research Accomplishments 
The main accomplishments in Year 3 are 

1. Assessment of accuracy of ROI-based molecular feature extraction with the real liver phantom 
data; 

2. Development of the factor analysis aided feature extraction method to improve the accuracy of 
feature parameter estimation; 

3. Assessment of non-invasive blood input function extraction with the patient data collected in 
clinical database at the USC PET center; 

4. Design of space-temporal filtering criteria to identify metastases embedded fi-om the unwanted 
noise and background interference; 

5. Assessment of improving SNR via spatial-temporal filtering algorithms with the liver phantom 
data; 

6. Accomplishment of the respective IRB approvals with protocol/language acceptable to USC's 
Institutional Review Board and the US Army IRB. 

4. List of Reportable Outcomes: 

4.1 Publications 

1. X. Yu, Z. Li, H. Jadvar and P. S. Conti, "Assessment of Non-invasive Blood Time Activity 
Extraction in Dynamic PET Oncology", SNM Annual Conference 2002, Los Angeles, CA., 
June 2002. 

2. X. Yu, C. C. Huang, and P. S. Conti, "Computer-aided Metastasis Detection with Dynamic 
PET", presented at the Era of Hope Conference, Orlando, FL., September 2002. 

3. X. Yu and I. S. Reed, "Theory and Algorithms of Rank Reduction for Subspace Filtering", 
submitted to IEEE Trans. On Information Theory, July 2002. 

4.2 Graduation 

Two students graduated with their M.S. degrees, respectively. Both were partially supported by this 
award. 

5. Conclusion 
The goal of this project is to improve detection of metastatic axillary breast cancer through 
sophisticated physiological modeling and statistical signal processing techniques. The major focus of 
Year 3 was to improved the feature extraction in visible, primary tumors by adding the factor analysis 
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to the conventional ROI averaging method and to develop the optimal feature-guided filtering criteria 
for metastasis screening, which were applied to suppress the interference-plus-noise in dynamic data 
proceeding to the hypothesis test detection. Two types of filters were derived with/without using the 
physiological features extracted from normal tissues. A real liver phantom, filled with dual tracers, 

C and F, was dynamically scanned. Three artificial lesions of different sizes were placed in the 
liver phantom with different lesion-to-background ratios. The performance of the modified feature 
extraction in the known tissues and the filtering algorithms searching for the unknowns were assessed 
with the phantom data. The results of phantom study demonstrated that the accuracy of feature 
extraction in the modified method can be dramatically improved compared to the conventional ROI 
analysis and that the feature-guided space-temporal filters can enhance the SNR in invisible lesion 
and make it become detectable. The assessment of non-invasive blood time activity extraction was 
also performed with patient data selected from our chnical database, all findings in theory and 
simulations will be continued in the extended Year 4 when more clinical data will be available. 
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